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GENERATION OF WAVES IN A LAYERED MEDIUM 

CONTAINING A LOCAL DEFECT 

A. A. Lyapin UDC 539.3:534.1 

We propose to investigate the boundary-value problem of the generation of elastic waves in a layered half-space with 

a surface indentation or an interior void in the presence of shear strain. Oscillations are excited by a load on the exposed (top) 
surface of the medium. In the investigation we use the method of boundary integral equations, based on the dynamic 

reciprocity theorem. We formulate appropriate integral representations for the wave field in the medium in terms of the 
distribution of displacements of defect points. We analyze the resulting boundary integral equations numerically as a function 

of the relations between the physical characteristics of the medium. The results are targeted for practical applications in flaw 
detection, earthquake-resistant construction, and vibration sounding of the earth. 

Investigations of the behavior of elastic media in the form of a layer or half-plane containing voids of arbitrary 
configuration or surface indentations have been reported in a great many papers to date [ 1-5]. 

The objective of the present study is to investigate the behavior of elastic bodies containing such defects of arbitrary 

configuration for media with a plane-parallel layered structure (stacked layers or a multilayer half-plane). 

1. We consider (without sacrificing generality) a two-layer half-plane with a defect in the form of a void or surface 
indentation contained wholly within a layer. The geometry of the region is described in Cartesian coordinates (x, y, z) by the 

relations 

D1 = {x > 0; y E ( - o 0 ,  +0o)} (half-plane); 

D 2 = {x E ( - h ,  0); y E ( -  co, + 00); (x, y) ~ f]} (layer with defect) 

where f~ is a simply cormected, compact domain in D 2, bounded by a piecewise-smooth curve 3'. 
Steady-state harmonic oscillations of frequency ~o are generated by a shear load on the surface of the layer, for example, 

a point force 

rxzlx--h = ~(Y - Y*)exp(-b'~ 

The rest of the boundary (including the surface of the defect) is assumed to be stress-free. The layer is rigidly attached to an 

underlying half-plane, and the requirement of continuity of the displacements w(x, y) and stresses rxz(X, y) in transition across 

the interface x = 0 is satisfied. The shear displacements wj(x, y) (] = 1 for the half-plane, j = 2 for the layer, and the media 

are characterized by the parameters Vsj and gj, which represent the wave velocity and shear moduli, respectively) satisfy the 

Helmholtz equation, each in its own domain. 
Invoking the limiting absorption principle, we can represent the function describing the displacement field in the half- 

plane by a Fourier integral around a contour I '  in the plane of the complex parameter ~ [6]: 

wl(x, y) = -~ fexp( - iay )  T(a) P(x, ~) da, 
F 

(1.1) 
P(x, a) = --exp(-cr,x)/~rl, ~ = ~ ,  0 = coh/V : ~ =/zJut, 

j= 1,2. 

Here all linear parameters, including the displacement functions, are normalized to the thickness of the layer h, and the stress 

functions are normalized to the shear modulus #2. We omit the time factor exp(-io~t) everywhere; T(t~) = Fy[r(y)] is the 
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Fourier transform of the contact stresses at the interface. When the underlying medium is a multilayer half-plane or stacked 

layers, the form of the function P(x,  ct) changes, but the only difficulties this creates for the investigator are numerical. 

To determine the displacements in the layer with the defect, we use the direct formulation of the method of boundary 

integral equations, based on the dynamic reciprocity theorem [7]. Of all the fundamental solutions used within the scope of 

the present study, the one described below is the most efficient. We introduce the Green's function corresponding to the effect 

of a point shear force applied at the point (x o, Yo) of the layer without any stresses on its faces x = 0 and x = - 1: 
i i 1 i _ ~ ( O , R - O  w.(:,, y, x o, yo) = 4H(2'(O~R) + 4~o ~(O,Ro) + 

+ l f e x p ( - t a y )  O(x,  a ,  x o, Yo)da, R = ~/(x - Xo) 2 + (y - yo) 2 , 
r 

R o = ' / ( x +  xo) 2 + ( y -  Yo) 2 ,R_,  = d ( x  + x o + 2) 2 + ( y -  yo) r, 

G(x,  a ,  x o, Y0) = exp(iaYo) [exp(cr2(x + xo))(exp(-2a~) + exp(-2a2(1 + x))) 

+ exp(-a2(2 + x + Xo))(exp(-2cr 2) + exp(2a2x))l(a2(1 - exp(-26rz)))-t. 

Here the components outside the integral sign represent the sum of the direct field of the source plus waves reflected once from 

the boundaries of the layer, and the term described by the contour integral represents multiply reflected waves. This form of 

the function w. lends itself to fast computation, regardless of the relations between the parameters (x, y) and (x o, Yo). We 

assume that the external forces applied to the layer with the defect correspond to the boundary conditions of the basic boundary- 

value problem and the interface matching condition: 

r 1~=0 = r(y), r 1~=_1 = ~ ( Y -  Y.), r,=lc~.y)~, = O, 

From the reciprocity relations we readily obtain an analog of the Kirchhoff equation for determining the displacements of points 

of the layer, including the boundaries x = 0 and x = - 1: 

w2(xo, Yo) = - f q . (x ,  y, x o, Yo) w2(x, y)ds  
? 

+ f r(y)w.(0, y, x c, Yo)dY + w.(-1 ,  y., Xo, Y0), (1.2) 

q . (x ,  y, xo, Yo) = Ow.(x, y, Xo, yo) /On(x,  y). 

In the derivation of the equations significant use is made of the property of the fundamental solution 

aw,(x, y,  x o, yo)/Ox = 0 at x = 0 and x = - 1, 

along with the relation for (x o, Yo) E 3' 

0 

lira flw,(x, y, x o, yo)OwJOy - Ow./Oy(x,  y, x o, yo)w2 ]dx = O, 

which is a consequence of the asymptotic behavior of  the functions w,  and w 2 as a finite set of propagating modes and 

cylindrical waves exhibiting power-law decay with increasing distance from the source. 

Letting (Xo, Yo) tend toward the boundary in Eq. (1.2) and taking into account the discontinuity of  the integral on its 
right-hand side, we obtain the boundary integral equation 

~(x  o, yo)w2(xo,Yo) + fq . (x ,  y, xo, yo)~(.':, y )ds  
g 

-= (1.3) 
= f r ( y ) w . ( O ,  y, x o, yo)dy + w . ( -  1, y., x,,,y0), (x o, Yo) ~Y" 

+ ~  

Here ((x o, Yo) = 0.5 for regular points of the boundary % ~(Xo, Yo) = #/(21r) for points of the boundary x o - 1 where 
it changes discontinuously, ~ is the interior angle corresponding to the discontinuity, and ~(Xo, Yo) = fl/Tr for points of  the 
boundary 3' at x o = - 1 (surface indentation). 

723 



To determine w2(x o, Yo) on 3', we eliminate the function r(y) from Eq. (1.3) by virtue of the equality of the 

displacements in transition from D 1 to D 2 across the interface x = 0. Accordingly, we use reexpansion equations [8] to write 

the Green's function in Fourier integral form: 

1 
,~. = ~ f e x p l i a ( y 0  - y ) l W . ( x , - , x o ) d . ,  

W.(x ,  c~, xo) = 
ch[a2max(x. %)lch[a2(l + rain(x, Xo))l 

a2s ha 2 

We can therefore write the function q .  as 

1 
q. = - ~ f e x p t i a ( y o  - y) 1 0,(.4, a ,  xo)da. 

1" 

Next, applying the Fourier transform in the coordinate Yo to Eq. ( 1 . 2 )  and making use of the relations 

F0[f'r(Y)W.(0, Y, x o, Yo)dY 1 W.(O, r Xo)T(ct), 

~o l  - f q.(x,  y, xo, yo)w2(x, y)ds I = - f Q.(x ,  -a ,Xo)exp(iay)w2(x , y)ds  

we obtain the following expression for the Fourier transforms of the contact stresses T(~): 

T(a)  = f (Qs - a ,  O)w2(x, y ) e x p ( i a y ) d s W . ( -  1, - a ,  O)exp ( iay . ) ) /A (a ) ,  
) ,  

A(a) = W.(O, a, O) - ~P(O, -a) .  

As a result, to determine the boundary distribution of the displacements on a defect in a two-layer medium, we have the integral 

equation 

~(xo, yo)W(X o, yo)+ f lq.(x, y, xo, yo) + q:(x, y, x o, Yo) lw2(x' y)ds 

= w . ( -  1, y., x 0, Y0) + w.*(- 1, y., Xo,Yo), (x o, yo)E 7, 

1 
q2 ( x, Y, "40, Yo) = - - ~ f  cxplia(Yo - Y ) l W . ( 0 ,  a, Xo)Q.(x, a,  0) /A(a ) ,  (1.4) 

l 

1 
w2(x' Y' xo' Y0) = - ~'~fexp [ia(y o - y ) ]W. (0 ,  c~, x0)W.(x, a, 0) /A(a ) .  

t" 

Consequently, the fundamental solution 

w.(x,  y, Xo,yo) + w+.(x, y, x o, Yo) (1.5) 

is a special type of solution that satisfies zero-valued boundary conditions on the exposed (top) surface of the layer and the 
conditions of  rigid attachment to the underlying medium on the lower surface. Note that the zeros of  the function A(~) 

correspond to the wave numbers of  Love waves in a two-layer half-plane (without a defect) and are bypassed by the contour 

F in the complex plane of the parameter or: positive downward, and negative upward. If  the layer and the half-plane have 

identical elastic parameters, the fundamental solution (1.5) degenerates into the Green's function for a half-plane: 

i 1 i 
4H~'(O2R) + 4~'(02R_,).  

The equivalence of  the boundary integral equation (1.5) and the original boundary-value problem is easily demonstrated 

on the basis of  the representation of the fundamental solution. 
Once the function w2(x, y) has been determined on 3', the wave field in the entire domain, including the boundary, is 

reconstructed from Eqs. (1,1) and (1.2) with allowance for Eq. (1.4). 

The procedure described here extends directly to problems of oscillations of a layered medium with a defect in the 

planar case. 
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2. As an example illustrating the calculation of the characteristics of the wave motion of a layer with a surface 

indentation, we consider the behavior of the amplitude of a surface wave in the far field of the source 

I Y0 - Y* [ > >  1 

as a function of the shape of the indentation. The surface of the indentation is characterized by the parameter x corresponding 

to its parametrization: 

y = ncos0, x = - 0 . 5  - 0.Scos2r ' ,  0~ 10, x l ,  • ~ (0; 0.51. 

The value of the parameter x = 0 correspond to a vertical surface-breaking crack of depth 0.5. 
The amplitude of the surface wave at frequencies 02 < ~r can be expressed by the relation 

i A =-~a-lexp(-iO2Y,) + i02fexp(-iO2Y)COS(n, ey)~,(x, y)ds]. 
? 

The first term characterizes the surface wave amplitude in the defect-free layer. It is evident from this equation that the surface 

wave energy is least influenced by defects in the form of planar cracks oriented parallel to the boundaries of  the layer. For 
vertical cracks the deviation from the corresponding curve for the defect-free layer is proportional to the opening of the crack. 

Figure 1 shows the amplitude A as a function of the parameter y .  for surface indentations of various shapes: x = 0.5 (solid 
curve); x = 0.1 (dashed curve); x = 0.02 (dot-dash curve). Beginning with a certain value of y ,  of  the order of the shear 
wavelength in the layer~ the dependence of A on y .  exhibits a periodic behavior. The modulus of the amplitude A oscillates 

about the corresponding value for the defect-free layer, deviating from it by an amount that decreases as the parameter x 

decreases in the range (0, 0.5). We note that these functional relations are typical for 02 < 7r, i.e., for relatively thin layers 
and small defect dimensions in comparison with the shear wavelength in the medium. 
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